Using Acoustic Emission to Detect HRSG Tube Cracks

2015 HRSG User's Group Conference March 09-11 – Orlando-FL

- Joe Frey
- Claudio Allevato
- Mauro Araujo
- Arilson Silva

Taking on your toughest technical problems

an employee-owned company

Parallels HRSGs / Heart "Piping"

• HRSG

- Water chemistry
- Operating regime
- Heart "Piping"
 - Blood chemistry
 - Operating regime (velocity by exercise)

an employee-owned company

Younger Next Year Chris Crowley and Dr. Harry Lodge

Superheater and Reheater Outlet Headers

Assessment and Remaining Life Prediction Typical levels of available information

i) Design data only. Likely ranking of header risk is possible.

ii) Design data + Distributed Control System (DCS) data. *Life prediction based on minimum properties and typical header temperature variation.*

iii) Design data + DCS + thermocouple data. *Steady load assessment based on minimum properties is possible. Probabilistic statements to justify inspection intervals may be made.*

iv) Design data + DCS + thermocouple data (steady and cyclic)
 + sample material data.
 Remaining life estimates can be performed with the most confidence.

Physical measurements NDT for creep damage and cracking Accelerated creep testing of samples.

Probabilistic Risk Assessment

Example: Options for superheat de-rate following results of sample testing indicating increasing risk of failure .

an employee-owned company

Effects of cyclic loading

Causes of premature cracking and failure:

- Thermal shock due to rapid heating and cooling rates (cracking in thick sections)
- Header distortion due to left to right variation in terminal tube temperatures (circ. cracking at ligaments)
- Individual terminal tube temperature variation due to flow restriction (terminal tube and weld cracking)
- Recommendation: install thermocouples on selected terminal tubes and monitor DCS and T/C temperature data.
- Remediation actions could include re-design of terminal tubes, replacement of blocked tube, etc.

Header Thermal Creep-Fatigue life Calculation

an employee-owned company

8

Effects of cyclic loading

Boiler tubes should be a low risk for failures due to cyclic loading. Possible exceptions

- Terminal tubes (discussed with headers)
- Dissimilar metal welds
- Welded platens
- Welded spacers

Risks may be determined from detailed analysis

an employee-owned company

Most Important Requirement For Each NDE Technique Is A

QUALIFIED INSPECTOR

WHO UNDERSTANDS THE TECHNIQUE, THE STRESSES, THE PROCESS, AND THE DAMAGE MECHANISMS BEING SOUGHT !!

Objective

To present situations where AET could be used to detect cracks in HRSG tubes, piping, drums and headers

HRSGs are NOT Designed and Built With Inspection In Mind

Difficult access for proper inspection

Scenario

What are we looking for with AET?	Where could they be?	When are they likely to occur?
Cracks	 Drums Headers Piping Tubes 	 Shutdowns Start ups Transient Conditions

Thermal Fatigue cracks in external steam header + cracked baffle weld in drum

EERING

Creep Fatigue cracks in steam piping

Typical temperature = Termocouple installed in the Weldolet. Found a variation aproximatly 60° F).

Thermal Fatigue cracks

an employee-owned company

Acoustic Emission related with operational data (pressure, temperature)

Next section

- So far we have shown a few cases where AET was able to detect damage in HRSG (drums and piping) and conventional units
- Now we will show other types of damage in HRSGs and conv, units we believe AET can be helpful detecting.

an employee-owned company

Low cycle fatigue cracks

Thermal Fatigue cracks at tube/header connections <u>"before they leak"</u>

We doubt AET can find this

INC.

Fatigue

Why should AET be considered?

- Most of these components have no or limited access
- Traditional NDT takes longer and is very expensive, if doable at all
- AET can be done during transient conditions

Difficult access - Drums and Headers

Difficult access - Tube x Headers Welds

Medium size boiler example:

Headers	Number of welds
Each header	50
44 top headers	2200
44 botton headers	2200
Total Header/Tube welds	4400
Acessible Welds	6 headers botton 6 headers top Total = 300 welds

Difficult access - Tube x Headers Welds

ABLE TO INSPECT 300 WELDS (7%)

Difficult Access - Headers

ABLE TO INSPECT 100 to 200 HEADERS (50%)

an employee-owned company

Difficult access for conventional NDT - Drums

- Internals
- External thermal insulation

Difficult access for conventional NDT - Piping

External thermal insulation No access (scaffold needed)

raulo

SI

How to/when to apply AET as alternate NDT

Execute NDT during	Method
During normal operating conditions/themal swings/start- ups/cooldowns	 Acoustic Emission Skin Temperature monitoring Stress monitoring
During outages on areas flagged by AET	 Eddy Current Advanced Ultrasonics FMR/PT

Examples in next slides

STRESS ENGINEERING SERVICES INC.

Welded waveguides onto a steam drum

PA/ET applied to "AE flagged" area during outage

Phased Array

Eddy Current

ET applied to "AE flagged" area during outage

PA/ET applied to "AE flagged" area during outage

Phased Array

Eddy Current

PA/ET applied to "AE flagged" area during outage

Conclusions

HRSG Inspections should be based on combining knowledge of process conditions, stress analysis, materials and possible damage mechanisms, and proper on stream AE monitoring, with selective NDT during outages

AET has been used as a powerfull on stream monitoring technique aiming at flagging areas with "crack-like" indications for follow-up during outages.

an employee-owned company

Thank you to our affiliate Araujo Engineering in Brazil for sharing their experiences.

Questions?

